Facts about Integration by Parts for	Explanation	
Indefinite Integrals		
$\int u dv = uv - \int v du$	The common Integration by Parts Formula for Indefinite Integrals.	
The LIATE Scale	Use this LIATE scale to pick your u and dv . Pick your u to be something higher on this scale and dv to be something	
L - Logarithm Function I - Inverse Trigonometric Function $\uparrow u$ A - Algebraic Function (polynomials) T - Trigonometric Function $\downarrow dv$ E - Exponential Function $(e^x \text{ or } 10^x)$	lower on this scale. This is just a guideline; there might be functions where you might not want to use the LIATE scale.	
How to compute du where $u = f(x)$?	$du = f'(x) \ dx$	
How to compute v where $dv = g'(x) dx$?	$v = \int dv = \int g'(x) dx = g(x)$	

- 1. Evaluate $\int xe^x dx$ through the following parts.
 - (a) Use the LIATE scale to assign your u and dv.

$$u = x$$
 $dv = e^x dx$

(b) Find du (the differential of u) and v (antiderivative of dv).

Solution:

Solution:

$$du = dx$$
 $v = \int e^x dx = e^x$

(c) Set up the integration by parts formula and find an antiderivative for the integral.

Solution: $\int xe^x dx = xe^x - \int e^x dx$ $= xe^x - e^x + C$

- 2. Evaluate $\int x^2 \ln(x) dx$ through the following parts.
 - (a) Use the LIATE scale to assign your u and dv.

Solution:			
	u = ln(x)	$dv = x^2 dx$	

(b) Find du (the differential of u) and v (antiderivative of dv).

$$du = \frac{1}{x} dx \qquad v = \frac{x^3}{3}$$

(c) Set up the integration by parts formula and find an antiderivative for the integral.

Solution: $\int x^2 ln(x) \, dx = \frac{x^3}{3} ln(x) - \int \frac{x^3}{3} \frac{1}{x} \, dx$ $= \frac{x^3 ln(x)}{3} - \frac{x^3}{9} + C$

3. Evaluate $\int e^x \sin(x) dx$ (You will have to use integration by parts twice).

Solution:

We first find

Solution:

$$u = \sin(x),$$
 $v = e^x,$
 $du = \cos(x),$ $dv = e^x dx.$

This leaves us with a new integral

$$\int e^x \sin(x) \, dx = e^x \sin(x) - \int e^x \cos(x) \, dx.$$

Unfortunately, we still don't know how to solve the integral we've been left with, but let's just integrate by parts one more time. Let

$$u = \cos(x),$$
 $v = e^x,$
 $du = -\sin(x),$ $dv = e^x dx,$

and we find

$$\int e^x \sin(x) \, dx = e^x \sin(x) - e^x \cos(x) - \int e^x \sin(x) \, dx.$$

But wait a minute. We can just add the last term over to find

$$2\int e^x \sin(x) \, dx = e^x \sin(x) - e^x \cos(x).$$

This is just twice what we originally wanted to find! So, we have

$$\int e^x \sin(x) \, dx = \frac{e^x \sin(x) - e^x \cos(x)}{2} + C.$$

4. Evaluate $\int_0^1 \arcsin(x) dx$.

Solution:

There is not much to go on here, but we can begin by choosing

$$u = \arcsin(x),$$
 $v = x,$
 $du = \frac{1}{\sqrt{1 - x^2}} dx,$ $dv = 1 dx.$

Now we integrate by parts to find

.)

$$\int \arcsin(x) \, dx = x \arcsin(x) - \int \frac{x}{\sqrt{1 - x^2}} \, dx.$$

With this new integral, we can make the substitution $w = 1 - x^2$ to find

$$\int \frac{x}{\sqrt{1-x^2}} \, dx = -\sqrt{1-x^2},$$

and so,

$$\int \arcsin(x) \, dx = x \arcsin(x) + \sqrt{1 - x^2}.$$

The original problem was a definite integral from 0 to 1, so we evaluate as

$$\int_0^1 \arcsin(x) \, dx = x \arcsin(x) + \sqrt{1 - x^2} \Big|_0^1 = \frac{\pi}{2} - 1.$$

5. Some additional practice.

1.
$$\int 4x \cos(2 - 3x) dx$$

2. $\int_{6}^{0} (2 + 5x) e^{x/3} dx$
3. $\int x^{2} \cos(3x) dx$
4. $\int t^{7} \sin(2t^{4}) dt$