\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Facts about Integration by Parts for } \\
\text { Indefinite Integrals }\end{array} & \text { Explanation } \\
\hline \int u d v=u v-\int v d u & \begin{array}{l}\text { The common Integration by Parts } \\
\text { Formula for Indefinite Integrals. }\end{array} \\
\hline \text { The LIATE Scale } & \begin{array}{l}\text { Use this LIATE scale to pick your } u \text { and } \\
d v . \text { Pick your } u \text { to be something higher } \\
\text { on this scale and } d v \text { to be something }\end{array}
$$ \\
lower on this scale. \\
This is just a guideline; there might be \\
functions where you might not want to \\

use the LIATE scale.\end{array}\right]\)| I - Inverse Trigonometric Function - Algebraic Function (polynomials)
 T - Trigonometric Function
 E - Exponential Function $\left(e^{x}\right.$ or $\left.10^{x}\right)$$\downarrow d v$ |
| :--- |
| How to compute $d u$ where $u=f(x) ?$
 How to compute v where $d v=g^{\prime}(x) d x ?$ |

1. Evaluate $\int x e^{x} d x$ through the following parts.
(a) Use the LIATE scale to assign your u and $d v$.

Solution:

$$
u=x \quad d v=e^{x} d x
$$

(b) Find $d u$ (the differential of u) and v (antiderivative of dv).

Solution:

$$
d u=d x \quad v=\int e^{x} d x=e^{x}
$$

(c) Set up the integration by parts formula and find an antiderivative for the integral.

Solution:

$$
\begin{aligned}
\int x e^{x} d x & =x e^{x}-\int e^{x} d x \\
& =x e^{x}-e^{x}+C
\end{aligned}
$$

2. Evaluate $\int x^{2} \ln (x) d x$ through the following parts.
(a) Use the LIATE scale to assign your u and $d v$.

Solution:

$$
u=\ln (x) \quad d v=x^{2} d x
$$

(b) Find $d u$ (the differential of u) and v (antiderivative of dv).

Solution:

$$
d u=\frac{1}{x} d x \quad v=\frac{x^{3}}{3}
$$

(c) Set up the integration by parts formula and find an antiderivative for the integral.

Solution:

$$
\begin{aligned}
\int x^{2} \ln (x) d x & =\frac{x^{3}}{3} \ln (x)-\int \frac{x^{3}}{3} \frac{1}{x} d x \\
& =\frac{x^{3} \ln (x)}{3}-\frac{x^{3}}{9}+C
\end{aligned}
$$

3. Evaluate $\int e^{x} \sin (x) d x$ (You will have to use integration by parts twice).

Solution:

We first find

$$
\begin{array}{cc}
u=\sin (x), & v=e^{x} \\
d u=\cos (x), & d v=e^{x} d x
\end{array}
$$

This leaves us with a new integral

$$
\int e^{x} \sin (x) d x=e^{x} \sin (x)-\int e^{x} \cos (x) d x
$$

Unfortunately, we still don't know how to solve the integral we've been left with, but let's just integrate by parts one more time. Let

$$
\begin{aligned}
u & =\cos (x), & v & =e^{x} \\
d u & =-\sin (x), & d v & =e^{x} d x
\end{aligned}
$$

and we find

$$
\int e^{x} \sin (x) d x=e^{x} \sin (x)-e^{x} \cos (x)-\int e^{x} \sin (x) d x
$$

But wait a minute. We can just add the last term over to find

$$
2 \int e^{x} \sin (x) d x=e^{x} \sin (x)-e^{x} \cos (x)
$$

This is just twice what we originally wanted to find! So, we have

$$
\int e^{x} \sin (x) d x=\frac{e^{x} \sin (x)-e^{x} \cos (x)}{2}+C .
$$

4. Evaluate $\int_{0}^{1} \arcsin (x) d x$.

Solution:

There is not much to go on here, but we can begin by choosing

$$
\begin{array}{rlrl}
u & =\arcsin (x), & v & =x, \\
d u=\frac{1}{\sqrt{1-x^{2}}} d x, & d v & =1 d x .
\end{array}
$$

Now we integrate by parts to find

$$
\int \arcsin (x) d x=x \arcsin (x)-\int \frac{x}{\sqrt{1-x^{2}}} d x
$$

With this new integral, we can make the substitution $w=1-x^{2}$ to find

$$
\int \frac{x}{\sqrt{1-x^{2}}} d x=-\sqrt{1-x^{2}}
$$

and so,

$$
\int \arcsin (x) d x=x \arcsin (x)+\sqrt{1-x^{2}}
$$

The original problem was a definite integral from 0 to 1 , so we evaluate as

$$
\int_{0}^{1} \arcsin (x) d x=x \arcsin (x)+\left.\sqrt{1-x^{2}}\right|_{0} ^{1}=\frac{\pi}{2}-1
$$

5. Some additional practice.
6. $\int 4 x \cos (2-3 x) d x$
7. $\int_{6}^{0}(2+5 x) e^{x / 3} d x$
8. $\int x^{2} \cos (3 x) d x$
9. $\int t^{7} \sin \left(2 t^{4}\right) d t$
